Accueil/ expose
It’s the neuron: how the brain really works
mardi 15 mars 2016

Loading the player ...
Descriptif

Exposé de Charles Randy Gallistel dans le cadre du Colloquium du DEC.

It is generally assumed that the brain’s computational capacities derive mostly from the structure of neural circuits—how it is wired—and from process(es) that rewire it in response to experience. The computationally relevant properties ascribed to the neuron itself have not changed in more than a century: It is a leaky integrator with a threshold on its output (Sherrington, 1906). The concepts at the core of molecular biology were undreamed of in Sherrington’s philosophy. They have transformed biological thinking in the last half century. But they play little role in theorizing about how nervous tissue computes. The possibility that the neuron is a full-blown computing machine in its own right, able to store acquired information and to perform complex computations on it, has barely been bruited. I urge us to consider it.
My reasons are:

1) The hypothesis that acquired information is stored in altered synapses is a conceptual dead end. In more than a century, no one has explained even in principle how altered synapses can carry information forward in time in a computationally accessible form.

2) It is easy to suggest several different models for how molecules known to exist inside cells can carry acquired information in a computationally accessible form.

3) The logic gates out of which all computation may be built are known to be implemented at the molecular level inside cells. Implementing memory and computation at the molecular level increases the speed (operations/s), energy efficiency (operations/J) and spatial efficiency (bits/m3) of computation and memory by many orders of magnitude. 5) Recent experimental findings strongly suggest that (at least some) memory resides inside the neuron.

Voir aussi


  • Aucun exposé du même auteur.
  • Base neurale de la mémoire spatiale : Po...
    Alain Berthoz
  • Interprétations spontanées, inférences p...
    Emmanuel Sander
  • Cognitive, developmental and cultural ba...
    Atsushi Senju
  • The origin of prosociality : a comparati...
    Nicolas Claidière
  • (Dis)organizational principles for neuro...
    Miguel Maravall Rodriguez
  • From speech to language in infancy
    Alejandrina Cristia
  • The Neural Marketplace
    Kenneth Harris
  • Why the Internet won't get you any more ...
    Robin Dunbar
  • Synergies in Language Acquisition
    Mark Johnson
  • The neuroeconomics of simple choice
    Antonio Rangel
  • Phonological Effects on the Acquisition ...
    Katherine Demuth
  • Inner speech in action : EMG data durin...
    Hélène Loevenbruck
  • Use of phonetic detail in word learning
    Paola Escudero
  • What is special about eye contact ?
    Laurence Conty
  • The inference theory of discourse refere...
    Amit Almor
  • Syntactic computations, the cartography ...
    Luigi Rizzi
  • Levels of communication and lexical sema...
    Peter Gärdenfors
  • Amygdalar mechanisms for innate, learne...
    Daniel Salzman
  • Explanation and Inference
    Igor Douven
  • Consciousness, Action, PAM !
    Thor Grunbaum
  • Principles of Neural Design
    Peter Sterling
  • Precursors to valuation
    Timothy Behrens
  • Is machine learning a good model of huma...
    Yann LeCun
  • Following and leading social gaze
    Andrew Bayliss
  • Biological Information: Genetic, epigene...
    Paul Griffiths
  • From necessity to sufficiency in memory ...
    Karim Benchenane
  • Comparing the difficulty of different ty...
    LouAnn Gerken
  • A big data approach towards functional b...
    Bertrand Thirion
  • Sign language and language emergence
    Marie Coppola
  • The collaborative making of an encyclope...
    Dario Taraborelli
  • The Evolution of Punishment
    Nichola Raihani
  • Metacontrol of reinforcement learning
    Sam Gershman
  • Homo Cyberneticus: Neurocognitive consid...
    Tamar Makin
  • Reverse Engineering Visual Intelligence
    Jim DiCarlo
  • What is listening effort?
    Ingrid Johnsrude
  • Genomic analysis of 1.5 million people r...
    Paige Harden
  • The Language of Life: exploring the orig...
    Catherine Hobaiter
  • Deliberate ignorance: The curious choic...
    Ralph Hertwig
  • The social brain in adolescence
    Sarah-Jayne Blakemore
  • Big data about small people: Studying ch...
    Michael Frank
  • Individual Differences in Lifespan Cogni...
    Stuart Richie
  • Why are humans still smarter than machin...
    James L. (Jay) McClelland
  • Contextual effects, image statistics, an...
    Odelia Schwartz
  • Problem solving in acellular slime mold...
    Audrey Dussutour
  • Redrawing the lines between language an...
    Neil Cohn
  • Choice and value : the biology of decisi...
    Alex Kacelnik
  • What happened to the 'mental' in 'menta...
    Joseph LeDoux
  • Rethinking sex and the brain: Beyond th...
    Daphna Joel
  • How robust are meta-analyses to publicat...
    Maya Mathur
  • How family background affects children’...
    Sophie Von Stumm
Auteur(s)
Charles Randy Gallistel

Professeur émérite

Plus sur cet auteur
Voir la fiche de l'auteur

Cursus :

Charles Ransom (Randy) Gallistel, né le 18 mai 1941 à Indianapolis aux États-Unis, est un spécialiste américain des bases neurobiologiques et cellulaires de la mémoire et des processus cognitifs de l’apprentissage. Il est un ardent défenseur de la théorie computo-représentationelle de l'esprit.
Auteur d’un ensemble importants de travaux sur l’appréhension de nombre, d'espace et du temps chez l'humain et l'animal, ses travaux portent aussi sur les relations entre connaissances préverbales et langage.

Il est membre de l'Academie nationale des sciences depuis 2002, et de l’Académie américaine des arts et des sciences depuis 2001.

Cliquer ICI pour fermer
Annexes
Téléchargements :
   - Télécharger l'audio (mp3)

Dernière mise à jour : 23/09/2016