Accueil/ expose
Reverse Engineering Visual Intelligence
mardi 14 janvier 2020

Loading the player...
Descriptif

Conférence de Jim DiCarlo (MIT) dans le cadre du Colloquium du département d'Etudes Cognitives de l'ENS.

The brain and cognitive sciences are hard at work on a great scientific quest — to reverse engineer the human mind and its intelligent behavior. Yet these field are still in their infancy. Not surprisingly, forward engineering approaches that aim to emulate human intelligence (HI) in artificial systems (AI) are also still in their infancy. Yet the intelligence and cognitive flexibility apparent in human behavior are an existence proof that machines can be constructed to emulate and work alongside the human mind. I believe that these challenges of reverse engineering human intelligence will be solved by tightly combining the efforts of brain and cognitive scientists (hypothesis generation and data acquisition), and forward engineering aiming to emulate intelligent behavior (hypothesis instantiation and data prediction). As this approach discovers the correct neural network models, those models will not only encapsulate our understanding of complex brain systems, they will be the basis of next-generation computing and novel brain interfaces for therapeutic and augmentation goals (e.g, brain disorders).

In this session, I will focus on one aspect of human intelligence — visual object categorization and detection — and I will tell the story of how work in brain science, cognitive science and computer science converged to create deep neural networks that can support such tasks. These networks not only reach human performance for many images, but their internal workings are modeled after— and largely explain and predict — the internal workings of the primate visual system. Yet, the primate visual system (HI) still outperforms current generation artificial deep neural networks (AI), and I will show some new clues that the brain and cognitive sciences can offer.

These recent successes and related work suggest that the brain and cognitive sciences community is poised to embrace a powerful new research paradigm. More broadly, our species is the beginning of its most important science quest — the quest to understand human intelligence — and I hope to motivate others to engage that frontier alongside us.

Voir aussi


  • Aucun exposé du même auteur.
  • Base neurale de la mémoire spatiale : Po...
    Alain Berthoz
  • Interprétations spontanées, inférences p...
    Emmanuel Sander
  • Cognitive, developmental and cultural ba...
    Atsushi Senju
  • The origin of prosociality : a comparati...
    Nicolas Claidière
  • (Dis)organizational principles for neuro...
    Miguel Maravall Rodriguez
  • From speech to language in infancy
    Alejandrina Cristia
  • The Neural Marketplace
    Kenneth Harris
  • Why the Internet won't get you any more ...
    Robin Dunbar
  • Synergies in Language Acquisition
    Mark Johnson
  • The neuroeconomics of simple choice
    Antonio Rangel
  • Phonological Effects on the Acquisition ...
    Katherine Demuth
  • Inner speech in action : EMG data durin...
    Hélène Loevenbruck
  • Use of phonetic detail in word learning
    Paola Escudero
  • What is special about eye contact ?
    Laurence Conty
  • The inference theory of discourse refere...
    Amit Almor
  • Syntactic computations, the cartography ...
    Luigi Rizzi
  • Levels of communication and lexical sema...
    Peter Gärdenfors
  • Amygdalar mechanisms for innate, learne...
    Daniel Salzman
  • Explanation and Inference
    Igor Douven
  • Consciousness, Action, PAM !
    Thor Grunbaum
  • Principles of Neural Design
    Peter Sterling
  • Precursors to valuation
    Timothy Behrens
  • Is machine learning a good model of huma...
    Yann LeCun
  • Following and leading social gaze
    Andrew Bayliss
  • It’s the neuron: how the brain really wo...
    Charles Randy Gallistel
  • Biological Information: Genetic, epigene...
    Paul Griffiths
  • From necessity to sufficiency in memory ...
    Karim Benchenane
  • Comparing the difficulty of different ty...
    LouAnn Gerken
  • A big data approach towards functional b...
    Bertrand Thirion
  • Sign language and language emergence
    Marie Coppola
  • The collaborative making of an encyclope...
    Dario Taraborelli
  • The Evolution of Punishment
    Nichola Raihani
  • Metacontrol of reinforcement learning
    Sam Gershman
  • Homo Cyberneticus: Neurocognitive consid...
    Tamar Makin
  • What is listening effort?
    Ingrid Johnsrude
  • Genomic analysis of 1.5 million people r...
    Paige Harden
  • The Language of Life: exploring the orig...
    Catherine Hobaiter
  • Deliberate ignorance: The curious choic...
    Ralph Hertwig
  • The social brain in adolescence
    Sarah-Jayne Blakemore
  • Big data about small people: Studying ch...
    Michael Frank
  • Individual Differences in Lifespan Cogni...
    Stuart Richie
  • Why are humans still smarter than machin...
    James L. (Jay) McClelland
  • Contextual effects, image statistics, an...
    Odelia Schwartz
  • Problem solving in acellular slime mold...
    Audrey Dussutour
  • Redrawing the lines between language an...
    Neil Cohn
  • Choice and value : the biology of decisi...
    Alex Kacelnik
  • What happened to the 'mental' in 'menta...
    Joseph LeDoux
  • Rethinking sex and the brain: Beyond th...
    Daphna Joel
  • How robust are meta-analyses to publicat...
    Maya Mathur
  • How family background affects children’...
    Sophie Von Stumm
Auteur(s)
Jim DiCarlo
Massachusetts Institute of Technology (MIT)
Neuroscientifique

Plus sur cet auteur
Voir la fiche de l'auteur

Cursus :

James "Jim" DiCarlo est un neuroscientifique américain actuellement professeur de neurosciences Peter de Florez au Massachusetts Institute of Technology.

Cliquer ICI pour fermer
Annexes
Téléchargements :
   - Télécharger la vidéo

Dernière mise à jour : 24/06/2020